Search results

Search for "glycyrrhetinic acid" in Full Text gives 3 result(s) in Beilstein Journal of Organic Chemistry.

Efficient synthesis of piperazinyl amides of 18β-glycyrrhetinic acid

  • Dong Cai,
  • ZhiHua Zhang,
  • Yufan Meng,
  • KaiLi Zhu,
  • LiYi Chen,
  • ChangXiang Yu,
  • ChangWei Yu,
  • ZiYi Fu,
  • DianShen Yang and
  • YiXia Gong

Beilstein J. Org. Chem. 2020, 16, 798–808, doi:10.3762/bjoc.16.73

Graphical Abstract
  • , China College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, China College of Pharmacy, Jiamusi University, Jiamusi, 154007, China 10.3762/bjoc.16.73 Abstract In the present study, a practical method to prepare piperazinyl amides of 18β-glycyrrhetinic acid was developed. Two main procedures
  • for the construction of important intermediate 8 are discussed. One procedure involves the amidation of 1-Boc-piperazine with 3-acetyl-18β-glycyrrhetinic acid, prepared by the reaction of 18β-glycyrrhetinic acid with acetic anhydride without any solvent at 130 °C. The other procedure to prepare
  • compound 8 involves the amidation of 18β-glycyrrhetinic acid followed by the esterification with acetic anhydride. Finally, compound 8 underwent N-Boc deprotection to prepare product 4. To ascertain the scope of the reaction, another C-3 ester derivative 17 was tested under the optimized reaction
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2020

Charge-transfer interaction mediated organogels from 18β-glycyrrhetinic acid appended pyrene

  • Jun Hu,
  • Jindan Wu,
  • Qian Wang and
  • Yong Ju

Beilstein J. Org. Chem. 2013, 9, 2877–2885, doi:10.3762/bjoc.9.324

Graphical Abstract
  • 10.3762/bjoc.9.324 Abstract We describe herein the two-component charge-transfer (CT) interaction induced organogel formation with 18β-glycyrrhetinic acid appended pyrene (GA-pyrene, 3) as the donor, and 2,4,7-trinitrofluorenone (TNF, 4) as the acceptor. The use of TNF (4) as a versatile electron acceptor
  • properties. UV–vis, fluorescence, mass spectrometric as well as variable-temperature 1H NMR experiments on these gels suggest that the CT interaction is one of the major driving forces for the formation of these organogels. Keywords: charge transfer; glycyrrhetinic acid; organogel; self-assembly
  • –vis region [25]. CT interactions have been employed to induce the supramolecular interactions between donors and acceptors, and lead to the formation of two-component organogels [26][27][28][29][30]. 18β-Glycyrrhetinic acid (GA, 1), a natural pentacyclic triterpenoid obtained from medicinal plants in
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2013

Synthesis and antiviral activities of spacer-linked 1-thioglucuronide analogues of glycyrrhizin

  • Christian Stanetty,
  • Andrea Wolkerstorfer,
  • Hassan Amer,
  • Andreas Hofinger,
  • Ulrich Jordis,
  • Dirk Claßen-Houben and
  • Paul Kosma

Beilstein J. Org. Chem. 2012, 8, 705–711, doi:10.3762/bjoc.8.79

Graphical Abstract
  • -glucuronic acid residues have been prepared in good yields by alkylation of 3-amino and 3-thio derivatives of glycyrrhetinic acid with a 2-iodoethyl 1-thio-β-D-glucopyranosiduronate derivative. The spacer-connected 3-amino derivatives were further transformed into N-acetylated and N-succinylated derivatives
  • . The deprotected compounds containing these carboxylic acid appendices mimic the glycon part of glycyrrhizin as well as the hemisuccinate derivative of glycyrrhetinic acid, carbenoxolone. Antiviral activities of the compounds were determined in a biological test based on influenza A virus-infected
  • saponin glycyrrhizin (GL) and its aglycon glycyrrhetinic acid (GA) are the main triterpene components of licorice roots and harbor various pharmacological activities, including antitumor, anti-inflammatory, antioxidant and antiviral properties [1][2]. The antiviral activities have been reported to be
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2012
Other Beilstein-Institut Open Science Activities